应用文写作网 >地图 >教学文档 >

实数教案

实数教案(经典十二篇)

时间:2025-04-11 作者:应用文写作网

相关推荐

在教学工作者实际的教学活动中,常常需要准备教案,教案是教学活动的依据,有着重要的地位。那么应当如何写教案呢?以下是小编为大家收集的实数数学教案,仅供参考,大家一起来看看吧。

实数教案 篇1

【教学目的】

精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。

【课前练习】

1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。

2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。

【典型例题】

例1 下列方程中两实数根之和为2的方程是()

(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

错答: B

正解: C

错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。

例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )

(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

错解 :B

正解:D

错因剖析:漏掉了方程有实数根的前提是△≥0

例3(20xx广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。

错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范围是 -1≤k<2

错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k= 时,原方程变为一次方程,不可能有两个实根。

正解: -1≤k<2且k≠

例4 (20xx山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。

错解:由根与系数的关系得

x1+x2= -(2m+1), x1x2=m2+1,

∵x12+x22=(x1+x2)2-2 x1x2

=[-(2m+1)]2-2(m2+1)

=2 m2+4 m-1

又∵ x12+x22=15

∴ 2 m2+4 m-1=15

∴ m1 = -4 m2 = 2

错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m = -4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1= -19<0,方程无实数根,不符合题意。

正解:m = 2

例5 若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。

错解:△=[-2(m+2)]2-4(m2-1) =16 m+20

∵ △≥0

∴ 16 m+20≥0,

∴ m≥ -5/4

又 ∵ m2-1≠0,

∴ m≠±1

∴ m的取值范围是m≠±1且m≥ -

错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。

正解:m的取值范围是m≥-

例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。

错解:∵方程有整数根,

∴△=9-4a>0,则a<2.25

又∵a是非负数,∴a=1或a=2

令a=1,则x= -3± ,舍去;令a=2,则x1= -1、 x2= -2

∴方程的整数根是x1= -1, x2= -2

错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3

正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3

【练习】

练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。

(1)求k的取值范围;

(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。

解:(1)根据题意,得△=(2k-1)2-4 k2>0 解得k<

∴当k< 时,方程有两个不相等的实数根。

(2)存在。

如果方程的`两实数根x1、x2互为相反数,则x1+ x2=- =0,得k= 。经检验k= 是方程- 的解。

∴当k= 时,方程的两实数根x1、x2互为相反数。

读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。

解:上面解法错在如下两个方面:

(1)漏掉k≠0,正确答案为:当k< 时且k≠0时,方程有两个不相等的实数根。

(2)k= 。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数

练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根 ?

解:(1)当a=0时,方程为4x-1=0,∴x=

(2)当a≠0时,∵△=16+4a≥0 ∴a≥ -4

∴当a≥ -4且a≠0时,方程有实数根。

又因为方程只有正实数根,设为x1,x2,则:

x1+x2=- >0 ;

x1. x2=- >0 解得 :a<0

综上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0时,原方程只有正实数根。

【小结】

以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。

1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。

2、运用根与系数关系时,△≥0是前提条件。

3、条件多面时(如例5、例6)考虑要周全。

【布置作业】

1、当m为何值时,关于x的方程x2+2(m-1)x+ m2-9=0有两个正根?

2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。

求证:关于x的方程

(m-5)x2-2(m+2)x + m=0一定有一个或两个实数根。

考题汇编

1、(20xx年广东省中考题)设x1、 x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。

2、(20xx年广东省中考题)已知关于x的方程x2-2x+m-1=0

(1)若方程的一个根为1,求m的值。

(2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。

3、(20xx年广东省中考题)已知关于x的方程x2+2(m-2)x+ m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。

4、(20xx年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。

实数教案 篇2

教学目标:

1、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。

2、体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。

3、了解完全平方公式的几何背景,培养学生的数形结合意识。

4、在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。

教学重点:

1、弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;

2、会用完全平方公式进行运算。

教学难点:

会用完全平方公式进行运算

教学方法:

探索讨论、归纳总结。

教学过程:

一、回顾与思考

活动内容:复习已学过的平方差公式

1、平方差公式:(a+b)(a—b)=a2—b2;

公式的结构特点:左边是两个二项式的'乘积,即两数和与这两数差的积。

右边是两数的平方差。

2、应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。

二、情境引入

活动内容:提出问题:

一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。

用不同的形式表示实验田的总面积,并进行比较。

三、初识完全平方公式

活动内容:

1、通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。并利用两数和的完全平方公式推导出两数差的完全平方公式:(a—b)2=a2—2ab+b2。

2、引导学生利用几何图形来验证两数差的完全平方公式。

3、分析完全平方公式的结构特点,并用语言来描述完全平方公式。

结构特点:左边是二项式(两数和(差))的平方;

右边是两数的平方和加上(减去)这两数乘积的两倍。

语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍。

四、再识完全平方公式

活动内容:例1用完全平方公式计算:

(1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2

2、总结口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。

五、巩固练习:

1、下列各式中哪些可以运用完全平方公式计算。

1、6完全平方公式:

一、学习目标

1、会推导完全平方公式,并能运用公式进行简单的计算。

2、了解完全平方公式的几何背景

二、学习重点:会用完全平方公式进行运算。

三、学习难点:理解完全平方公式的结构特征并能灵活应用公式进行计算。

四、学习设计

(一)预习准备

(1)预习书p23—26

(2)思考:和的平方等于平方的和吗?

1、6《完全平方公式》习题

1、已知实数x、y都大于2,试比较这两个数的积与这两个数的和的大小,并说明理由。

2、已知(a+b)2=24,(a—b)2=20,求:

(1)ab的值是多少?

(2)a2+b2的值是多少?

3、已知2(x+y)=—6,xy=1,求代数式(x+2)—(3xy—y)的值。

《1、6完全平方公式》课时练习

1、(5—x2)2等于;

答案:25—10x2+x4

解析:解答:(5—x2)2=25—10x2+x4

分析:根据完全平方公式与幂的乘方法则可完成此题。

2、(x—2y)2等于;

答案:x2—8xy+4y2

解析:解答:(x—2y)2=x2—8xy+4y2

分析:根据完全平方公式与积的乘方法则可完成此题。

3、(3a—4b)2等于;

答案:9a2—24ab+16b2

解析:解答:(3a—4b)2=9a2—24ab+16b2

分析:根据完全平方公式可完成此题。

实数教案 篇3

3.4 用尺规作三角形

(3)预习作业:

2、如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.

(1)若BC在DE的同侧(如图①)且AD=CE,求证: .

(2)若BC在DE的两侧(如图②)其他条件不变,问:(1)中的结论是否仍然成立?若是请予证明,若不是请说明理由.

3、(1)如图(1),已知AB=CD,AD=BC,O为AC的中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由.

(2)若将过O点的'直线旋转至图(2)、(3)的情况时,其他条件不变,那么图(1)中∠1与∠2的关系还成立吗?请说明理由.

4、已知∠AOB=900,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.

如图1,当CD OA于D,CE OB于E,易证:CD=CE

当三角板绕点C旋转到CD与OA不垂直时,在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.

实数教案 篇4

教学目标:

1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

重点与难点:

重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

难点:分析典型图案的设计意图。

疑点:在设计的图案中清晰地表现自己的设计意图

教具学具准备:

提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)

明确在欣赏了图案后,简单地复习平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本

1 欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的'图案通过轴对称变换得到左上图和右下图。

(二)课内练习

(1) 以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2) 利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)

八年级数学上册教案(五)延伸拓展

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

实数教案 篇5

一、说教材

本节课是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》的第六节内容。在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。本节课的教学目标是:

知识与能力

1、了解实数的概念和意义,能对实数按要求进行分类;了解实数和数轴上的点是一一对应的

2、了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样

过程与方法

1、在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。

2、在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。

情感态度与价值观

通过探索发现,增强学习数学的兴趣,培养学习的主动性,增强克服困难的勇气。

教学重点

1.了解实数意义,能对实数进行分类;

2.在实数范围求相反数、倒数和绝对值、明确实数的运算规律;

3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。 教学难点

理解实数与数轴上的点一一对应

二、说学生

本人任教班级的学生基础比较扎实,学习积极性高,求知欲、表现欲强,具有一定的独立思考和探究的能力

三、说教法

根据本节课的教学内容和学生的实际水平,我采用的是引导发现法和多媒体辅助教学。

(1)引导发现法是通过教师的引导、启发,调动学生参与教学活动的积极性,充分发挥教师的主导作用和学生的主体作用。在教学中通过设置疑问,创设出思维情境,然后引导学生动脑、动手,使学生在开放、民主、和谐的教学氛围中获取知识,提高能力,促进思维的发展。

(2) 借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的`。(这也符合教学论中的直观性原则和可接受性原则。)

(3)教具:三角板、多媒体。

四、说学法

古人说得好,“授人以鱼,只供一饭;教人以渔,终身受用”,我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习、享受学习。因此,在本节课的教学中引导学生“仔细看、动脑想、多交流、勤练习”的学习,加大学生的参与机会,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们“会观察”、 “会类比”、“会分析”、“会归纳”的能力。

五、说教学过程

本节课我先引导学生回顾本章有理数的定义及分类,为进一步学习引入无理数后数的范围的扩充作准备。学生通过主动思考并积极回答,相互补充完善了旧知识的复习,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。通过举例明确了无理数的表现形式,为后续判断或者对实数进行分类提供了认知准备。

通过一个例题学生动手填写对有理数和无理数分类,并进行小组交流讨论,对带根号的数是否是无理数有了进一步认识。然后请学生代表发表意见,适当地集中学生的观点,并逐步将其归纳。

接下来学生类比有理数中相关概念,体会到了实数范围内的相反数、倒数、绝对值的意义,并进一步掌握了实数的相反数、倒数、绝对值等知识。

学生类比有理数中相关运算,体会到了实数范围内的运算及运算律。并探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小。

然后通过相关练习,检测学生对实数相关知识的掌握情况。 最后学生交流,互相补充,完成本节知识的梳理。

布置作业:所布置作业都是紧紧围绕着“实数”的概念及运用。设计选作题是为了给学有余力的学生留出自由发展的空间。

六、教学评价

实数的概念;实数与数轴上的点一一对应;实数的分类是本节课的重点,而实数的有关知识对后续的学习又显得尤为重要,因此本节课中教师的课前准备与课堂组织显得非常重要。在教学过程中,通过创设问题情境,积极引导、启发学生探索思考,使学生学会学习、学会探索、学会研究。同时,借助设计制作的多媒体课件辅助手段,极大地提高了课堂教学效益。学生是课堂的主人,本节课中,学生在教师创设的情境下,自主探索,合作交流,积极参与课堂教学,主动构建新的认知结构,他们学习的积极性得到充分发挥,因此学生的主体地位也得到很好地保证。

七、说板书设计

我将板书设计为“提纲式”。这样设计主要是力求重点突出,能加深学生对重点知识的理解和掌握,便于记忆。

实数教案 篇6

教学目的

1、使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。

2、熟识等边三角形的性质及判定、

3、通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。

教学重点

等腰三角形的性质及其应用。

教学难点

简洁的逻辑推理。

教学过程

一、复习巩固

1、叙述等腰三角形的性质,它是怎么得到的?

等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。

等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的'对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。

2、若等腰三角形的两边长为3和4,则其周长为多少?

二、新课

在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。

等边三角形具有什么性质呢?

1、请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。

2、你能否用已知的知识,通过推理得到你的猜想是正确的?

等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。

3、上面的条件和结论如何叙述?

等边三角形的各角都相等,并且每一个角都等于60°。

等边三角形是轴对称图形吗?如果是,有几条对称轴?

等边三角形也称为正三角形。

例1、在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。

分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?

问题2:求∠1是否还有其它方法?

三、练习巩固

1、判断下列命题,对的打“√”,错的打“×”。

a、等腰三角形的角平分线,中线和高互相重合( )

b、有一个角是60°的等腰三角形,其它两个内角也为60°( )

2、如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。

3、P54练习1、2。

四、小结

由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。

五、作业:

1、课本P57第7,9题。

2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。

实数教案 篇7

一、学生知识状况分析

学生在初一时已经学过数轴,对数轴有一定的了解,掌握了数轴的画法,知道实数与数轴上的点成一一对应关系,并且建立了一定的数形结合思想.以前学生所学的方程的解具有唯一性,而不等式的解的个数有无数个,这对学生来说是全新的开始;在前一课时,学习了不等式的基本性质,学生可利用性质解一些简单的不等式,为本节内容打下了基础。但对不等式解集的含义及表示方法还全然不知,因而在教学中要作更进一步的探索和学习.

二、教学任务分析

1、教材分析:

通过前面的学习, 学生已初步体会到生活中量与量之间的关系,不仅有相等而且有大小之分,为了弄清这种大小关系,教材在此创设了丰富的实际问题情境,引出不等式的解的问题,进一步探索出不等式的解集,同时还要求在数轴上把不等式的解集表示出来,从而渗透了“数----形”结合的思想,发展了学生符号表达的能力以及分析问题、解决问题的能力。教材中设置的“议一议”意在引导学生回忆实数与数轴上的点的对应关系,认识数轴上的点是有序的,实数是可以比较大小的,体现了新教材循序渐进,螺旋上升的特点.

2、教学目标:

(1)知识与技能目标:

①能够根据具体情境中的大小关系了解不等式的意义

②能够在数轴上表示不等式的解集

(2)过程与方法目标:

①培养学生从现实情况中探索、发现并提出简单的数学问题的能力。

②经历求不等式的解集的过程,并试着把不等式的解集在数轴上表示出来,发展学生的创新意识。

(3)情感态度与价值观目标:

从实际问题中抽象出数学模型,让学生认识数学与人类生活的密切联系及对人类历史的作用,通过探索求不等式的解集的过程,体验数学活动充满着探索与创造。

3、教学重点:

(1)理解不等式中的相关概念

(2)探索不等式的解集并能在数轴上表示出来

4、教学难点:

探索不等式的解集并能在数轴上表示出来

三、教学过程分析

本节课设计了七个环节,第一环节——复习旧知识;第二环节——情境引入;第三环节——课堂探究;第四环节——例题讲解;第五环节——随堂练习;第六环节——课堂小结;第七环节——布置作业。

第一环节:复习旧知识

活动内容:师:上节课,对照等式的性质类比地学习了不等式的基本性质,并且也探索出了它们的异同点,下面我们来回顾一下不等式的基本性质。(多媒体呈现)

活动目的:让学生回顾前一节内容,也为本节课教学做准备,起到承上启下的作用。

活动效果:学生基本掌握不等式的基本性质。

第二环节:创设情境,导入新课

活动内容:在某次数学竞赛中,教师对优秀学生给予奖励,花了30元买了3个笔记本和若干支笔,已知笔记本每本4元,笔每支2元,问最多能买多少支笔?

活动目的:由一个实际生活情景引入,能引起学生学习的积极性,具有实际生活意义。

活动效果:学生1:3个笔记本共花去12元,还剩18元,可买9支笔.

学生2:我认为可以买1,2,3…9支,最多9支.

此时学生讨论激烈,具有较高的学习热情,探索欲望极强。为以下不等式的解集作下铺垫.

第三环节:师生互动,课堂探究

活动内容:通过学生们的相互交流,抽象到数学上:设至少可买X支笔,那么买笔记本的总价格与买笔的总价格的和不超过30元,因此: 3×4+2X≤30,利用不等式的基本性质可解得X≤9.

(一)提出问题,引发讨论探索交流:

1、若某人要完成一件工作,要求他完成这项任务的时间不得少于4小时,你知道他允许用的时间有多长吗?(X≥4)

2、燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10米以外的安全区域,已知导火线的燃烧速度为0.02m/s,人离开的速度为4 m/s,那么导火线的长度应为多少㎝?

分析:人转移到安全区域需要的时间最少为 (S),导火线燃烧的时间为 秒,要使人转移到安全地带,必须有: >

解:设导火线的长度为x(㎝),则:

∴x>5

(二)想一想:

(1)x=5、6、8能使不等式成立吗?

(2)你还能找出一些使不等式x>5成立的x的值吗?

(三)导入知识,解释疑难:

通过以上问题情境的引入可知:所列出的不等式中都含有未知数,而符合条件的未知数的值很多,只要将其中任一个未知数的值代入原不等式中,均能使不等式成立,把“能使不等式成立的未知数的值,叫做不等式的解。”不等式的解有时有无数个,有时有有限个,有时无解。

一个含有未知数的不等式的所有解,组成这个不等式的解集,求不等式的解集的过程叫做解不等式。

既然不等式的'解集在通常情形下有很多个符合条件的解,那么我们能否用一种直观的方法把不等式的解集表示出来呢?请同学们相互交流,发表自己的见解。

(四)议一议:

请同学们用自己的方式将不等式X>5的解集和不等式X-5≤-1的解集分别表示在数轴上,并与同伴进行交流

学生1:

X>5 X≤4

学生2:

X>5 X≤4

教师:同学1他这样表示无法区别有“等于”和没有“等于”。同学2的方法让人认为解集是在两个数之间,也容易引起误解。那么我们怎么来解决呢?以上两个解集应表示为:

注意:将不等式的解集表示在数轴上时,要注意:

1)指示线的方向,“>”向右,“<”向左.

2)有“=”用实心点,没有“=”用空心圈.

活动目的:通过生活情境导入不等式的意义及解集的含义,从而引发表示不等式解集的必要性。学习在数轴上表示不等式解集时,先鼓励学生用自己的方法表示,以发展他们的创新意识。

活动效果:本环节从生活实际情境引入,大力激发了学生的学习热情,较简单的问题串,让学生获得了成功的感受。最后在数轴上表示不等式的解集,充分体现了学生的创新能力。

第四环节:例题讲解

活动内容:根据不等式的基本性质求不等式的解集,并把解集表示在数轴上

(1)X-2≥-4 (2)2X≤8 -2X-2>-10

解:(1)X≥-2

(2)X≤4

(3)X<4

活动目的:给学生做个示范,给出格式及方法。

活动效果:学生基本都能轻松掌握

第五环节:随堂练习

活动内容:

1、判断正误:

(1)不等式X-1﹥0有无数个解

(2)不等式2X-3≤0的解集为X≥

2、将下列不等式的解集分别表示在数轴上:

(1)X>4 (2)X≤-1 (3)X≥-3 (4)X≤5

3、填空1)方程2x=4的解有( )个,不等式2x<4的解有( )个2)不等式5x≥-10的解是( )

3)不等式x≥-3的负整数解是( )

4)不等式x-1<2的正整数解是( )

活动目的:对本课知识进行巩固练习。

活动效果:学生都能利用不等式的基本性质解简单的不等式,并能在数轴上表示不等式的解集。

第六环节:课时小结

活动内容:

1、理解不等式的解,不等式的解集,解不等式的概念

2、会根据不等式的基本性质解不等式,并把解集表示在数轴上。

活动目的:鼓励学生回顾本节课所学内容,用自己的语言叙述什么是不等式的解、不等的解集、解不等式的概念以及怎样把不等式的解集表示在数轴上。活动效果:学生能用自己的语言较为准确地描述不等式解、解集、解不等式的概念,对在数轴上表示不等式解集的方法及注意事项都能准确表述。

第七环节:作业

习题1、3

四、教学反思

1、要充分领会教材和使用教材:

教师在教学过程中应充分领会教材,注重知识的衔接,在教学中充分体现数——形结合思想的渗透,同时也不时渗透集合的概念为高中学习作好衔接,设置问题情境让他们有兴趣参与探究、学习,从而去思考。培养学生动手、动脑、合作的精神,教学中重点放在不等式解集的探索过程。

2、充分体现学生的合作交流、积极参与

通过教师的引入让学生体会采用类比法思想自己推导出不等式的性质,进一步通过问题情况的引入,积极参与交流探索,最后老师作进一步诱导,能及时发现学生在分析问题解决问题中的不同见解,以及思维的误区,及时进行纠正、指导。把学生在课堂上学习的热情激发出来,使得人人参与交流、探索,给每个学生展示自己的平台。

3、需注意的方面:

在给予学生充分交流的同时,老师需积极参与,与学生一起创建建模的理念,并不时纠正不正确的思维。老师在小组活动中应给予学生充分的启发引导,对合作交流中出现的问题要及时更正,对困难学生要给予帮助,使小组合作学习更具有实效性。

实数教案 篇8

学习目标:

1、使学生了解无理数和实数的意义能用夹值法求一个数的算术平方根的近似值;.

2、体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数

夹值法及估计一个(无理)数的大小的思想。

学习重点:无理数及实数的概念

学习难点;实数概念、分类.

学习过程:

一、学习准备

1、写出有理数两种分类图示

2、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?

二、合作探究

1、阅读课本第11页的思考,想一想怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?动手试一试,并绘出示意图

方法1:方法2:

2、我们已经知道:正数x满足=a,则称x是a的算术平方根.当a恰是一个数的平方数时,我们已经能求出它的算术平方根了,例如,=4;但当a不是一个数的平方数时,它的算术平方根又该怎祥求呢?例如课本第11页的大正方形的边长是,表示2的'算术平方根,它到底是个多大的数?你能求出它的值吗?阅读课本第11、12页夹值法探究,尝试探究,完成填空:

因为()2=<3,()2=>3

所以<<

因为()2=<3,()2=>3

所以<<

因为()2=<3,()2=>3

所以<<

因为()2=<3,()2=>3

所以<<

像上面这样逐步逼近,我们可以得到:≈

3、用计算器得出,的结果,再把结果平方,你有什么发现?多试试几个。

4、什么是无理数?例举我们学过的一些无理数

5、无理数有几种分类方法,写出图示。

三、学习体会:

本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?

四、自我测试

1、判断:

①实数不是有理数就是无理数。()②无理数都是无限不循环小数。()

③无理数都是无限小数。()④带根号的数都是无理数。()

⑤无理数一定都带根号。()

2、实数,,,3.1416,,,0.2020020002……(每两个2之间多一个零)中,无理数的个数有()

A.2个B.3个C.4个D.5个

3、下列说法中正确的是()

A、A.无理数是开方开不尽的数B.无限小数不能化成分数

C.无限不循环小数是无理数D.一个负数的立方根是无理数

4、将0,3.14,,,π,,,,,,0.7070070007…分别填入相应的集合内.

有理数集合{ …};正分数集合{ …}

无理数集合{ …};负整数集合{ …}

实数集合{ …}.

拓展训练:

1、在实数范围内,下列各式一定不成立的有()

(1)=0;(2)+a=0;(3)+=0;(4)=0.

A.1个B.2个C.3个D.4个

2、阅读课本第18页“不是有理数”的证明。

3、根据右图拼图的启示:

(1)计算+=________;

(2)计算+=________;

(3)计算+=________.

数学小知识——祖冲之和π值的计算

祖冲之(429~500),中国南北朝时期著名的数学家和天文学家.他在数学上的主要贡献是:

1.推算出圆周率π在不足近似值3.1415926和过剩近似值3.1415927之间、精确到小数点后7位.

2.和祖暅一起解决了球体积的计算问题,得到球体积公式,并提出了“幂势既同、则积不容异”的原理.

祖冲之还找到了两个近似于的分数值,一个是,称为约率,另一个是,称为幂率,后者是祖冲之独创的,因此,后人称之为“祖率”,以纪念这位数学家.

实数教案 篇9

教学目的

1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。

2、使学生能了解实数绝对值的意义。

3、使学生能了解数轴上的点具有一一对应关系。

4、由实数的分类,渗透数学分类的思想。

5、由实数与数轴的一一对应,渗透数形结合的思想。

教学分析

重点:无理数及实数的概念。

难点:有理数与无理数的区别,点与数的一一对应。

教学过程

一、复习

1、什么叫有理数?

2、有理数可以如何分类?

(按定义分与按大小分。)

二、新授

1、无理数定义:无限不循环小数叫做无理数。

判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。

2、实数的定义:有理数与无理数统称为实数。

3、按课本中列表,将各数间的联系介绍一下。

除了按定义还能按大小写出列表。

4、实数的相反数:

5、实数的绝对值:

6、实数的运算

讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

例2,判断题:

(1)任何实数的'偶次幂是正实数。( )

(2)在实数范围内,若| x|=|y|则x=y。( )

(3)0是最小的实数。( )

(4)0是绝对值最小的实数。( )

解:略

三、练习

P148 练习:3、4、5、6。

四、小结

1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。

2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。

五、作业

1、P150 习题A:3。

2、基础训练:同步练习1。

实数教案 篇10

菱形

学习目标(学习重点):

1.经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;

2.运用菱形的识别方法进行有关推理.

补充例题:

例1. 如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.

例2.如图,平行四边形ABCD的对 角线AC的垂直平分线与边AD、BC分别交于E、F.

四边形AFCE是菱形吗?说明理由.

例3.如图 , ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点

(1)试说明四边形AECG是平行四边形;

(2)若AB=4cm,BC=3cm,求线段EF的长;

(3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形.

课后续助:

一、填空题

1.如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形

2.如图,D、E、F分别是△ABC的边BC、CA、AB上的.点,

且DE∥BA,DF∥ CA

(1)要使四边形AFDE是菱形,则要增加条件______________________

(2)要使四边形AFDE是矩形,则要增加条件______________________

二、解答题

1.如图,在□ABCD中 ,若2,判断□ABCD是矩形还是菱形?并说明理由。

2.如图 ,平行四边形A BCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.

(1) AC,BD互相垂直吗?为什么?

(2) 四边形ABCD是菱形 吗?

3.如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF∥AB交BC于F,试问: 四 边形ABFE是菱形吗?请说明理由。

4.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.

⑴求证:ABF≌

⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.

实数教案 篇11

尊敬的各位领导、评委老师:

大家好!

今天我说课的题目是《实数》。实数是人教版数学教材第六章实数的第3节第1课时。刚讲完平方根、立方根,下一章将学习平面直角坐标系中的点和实数对一一对应的关系,所以本节课的设置起到了承前启后的作用。本节课在数的开方的基础上引进无理数的概念,使数从有理数范围扩展到实数范围。实数在中学教学中占有重要地位,它不仅是今后学习二次根式,一元二次方程以及锐角三角函数等知识的基础,也是今后学习高中数学中的函数,不等式等知识的基础。本节课的重点是对无理数和实数的概念的认识,实数与数轴上的点是一一对应的关系。本节课的难点是对无理数的认识。

依据《课程标准》并结合教材内容及学生的认知水平和思维特点。

确定本节课的教学目标如下:

1、了解无理数和实数的概念,知道实数与数轴上的点是一一对应的关系。

2、通过无理数引入,经历数从有理数扩展到实数的过程,培养从特殊到一般,由具体到抽象的逻辑思维能力,并渗透类比思想,数形结合思想,分类讨论思想。

3、敢于发表自己的想法。养成认真勤奋,独立思考,合作交流等学习习惯,形成严谨求实的科学态度。

常言道:“教学有法,教无定法。”为了讲清本节课的重难点,我主要采取以下教学方法:

1、愉悦教学法:学生带着快乐走进课堂,不仅便于教师教学,更有助于重难点的突破。

2、探究式教学法:学生通过独立思考,动手操作,小组交流等达到自主探究的目的。

3、类比教学法:类比有理数学习实数,使学生课上有亲切感,乐于接受新知。

4、直观教学法:通过自制简易教具,多媒体等直观演示,以助重点的掌握。

为了培养高素质人才,我注重学法的指导。

本节课我主要采取:

1、自主学习:学生通过独立思考,动手操作,小组交流达到自主学习的目的。

2、学练结合:熟能生巧,新知学后,练习是必不可少的,学练结合,使学生达到运用新知解题能力。

下面我来说一说本节课的教学程序

1、创设意境,设疑导入。俗话说:良好的开端就是成功的一半。为了让学生带着浓厚的兴趣走进课堂。上课伊始,大屏幕上出现一队英姿飒爽的军人。同时播放《一二三四歌》,大约两句后,音乐戛然而止。一位头戴“无限不循环小数”军帽的军人向前一步:“报告排长,我们去哪个军营休息?”排长说:原地待命,马上解决!排长是如何解决的呢?让我们去探个究竟。在学生疑问和好奇中,引出课题第六章第三节第一课时:实数。

2、对无理数的认识不仅是本节课的教学难点,也是本节课的教学重点之一。为了突出教学重点,突破教学难点,我编写了这样一个故事:一天,有理数家进来了一帮人。一看,不是咱有理数家的人,进屋后,这帮人便表明来意,说要加入数的家族。有新成员加入有理数家当然喜不胜收。于是引出无理数,那么常见的无理数有哪些呢?学生很容易从来的客人中分出三类:

(1)含π的数;

(2)开()不尽方根的数;

(3)有规律的无限不循环小数,并类比有理数,让学生知道无理数分正无理数和负无理数,紧接着跟踪一道找无理数的例题。然后引导学生回归导言,排长把无限不循环小数分配到哪个军营?学生们会异口同声地说:“无理数军营”。

3、了解实数的概念是本节课的第二个重点,为了让学生更好地掌握这个重点,我设计了这样一个情境:负数来了,数的家族壮大了,起名有理数。今天无理数来了,数的家族再次壮大了,起什么名好呢?学生们纷纷发言,当学生看到黑板上的课题自然回答出实数,接下来类比有理数,让学生独立思考,小组交流,得到实数的两种分类。这样教学,学生不仅学会了知识,而且知道了类比思想。并跟踪两道例题,以助重点的`突破。

4、本节课的第三个重点是实数与数轴上的点一一对应。为了更直观的教学,我利用fLAsH课件做了圆在数轴上滚动的课件,学生清楚地看到了无理数π在数轴上的对应点,接着提问:数轴上到原点距离等于π的数有几个?学生们找到正负π;在数轴上表示根号2的教学,我设计了一道探究题:有两个边长为1分米的正方形,你能用它们拼成一个面积为2的大正方形吗?学生们通过独立思考,动手操用,小组交流,黑板演示,最后成功了。由算术平方根定义知道这个面积为2的大正方形的边长为根号2,引导学生发现大正方形的边长其实就是小正方形的对角线,也就是说,边长为1的正方形的对解线是根号2,由教师引导,让学生在数轴上画边长为1的正方形,再利用圆规把它的对角线转移到数轴上,于是在数轴上找到了表示根号2的点,接着提问:数轴上到原点距离等于根号2的数有几个?学生找到正负根号2。这样教学,学生们不仅知道实数和数轴上的点一一对应,而且还知道了数形结合思想,分类讨论思想,并配有两道例题。

5、回顾本节课,让学生谈谈收获,接下来我说一下教学媒体资源选择。本节课我选择了丰富课堂教学内容的媒体资源。如《一二三四》军旅歌。

我知道,作为一名数学教师,学生得高分不是目的,更重要的是学生能力的培养,本节课学生们知道了类比思想,数形结合思想,分类讨论思想,我注重培养学生独立思考能力,动手操作能力,合作交流能力,语言组织表达能力,培养学生逻辑思维能力,让学生不仅学会数学,更重要的是让学生喜欢上数学课,爱上数学课,喜欢这探究式教学的乐趣,喜欢这师生、生生情感交流、传递、延续……

“一腔热血尽洒三尺讲台,两袖清风书写踏实人生”我将以此为座右铭,用科学的态度精心设计每一节课,使我的课堂教学再上一层楼。谢谢!

实数教案 篇12

一、学习目标及重、难点:

1、了解方差的定义和计算公式。

2、理解方差概念的产生和形成的过程。

3、会用方差计算公式来比较两组数据的波动大小。

重点:方差产生的必要性和应用方差公式解决实际问题。

难点:理解方差公式

二、自主学习:

(一)知识我先懂:

方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是

我们用它们的平均数,表示这组数据的方差:即用

来表示。

给力小贴士:方差越小说明这组数据越 。波动性越 。

(二)自主检测小练习:

1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。(jz139.cOM 迷你句子网)

2、甲、乙两组数据如下:

甲组:10 9 11 8 12 13 10 7;

乙组:7 8 9 10 11 12 11 12.

分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.

三、新课讲解:

引例:问题: 从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)

甲:9、10、 10、13、7、13、10、8、11、8;

乙:8、13、12、11、10、12、7、7、10、10;

问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数: = )

(2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了 )

归纳: 方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是

我们用它们的平均数,表示这组数据的方差:即用 来表示。

(一)例题讲解:

例1、 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、

测试次数 第1次 第2次 第3次 第4次 第5次

段巍 13 14 13 12 13

金志强 10 13 16 14 12

给力提示:先求平均数,在利用公式求解方差。

(二)小试身手

1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

经过计算,两人射击环数的平均数是 ,但S = ,S = ,则S S ,所以确定

去参加比赛。

1、求下列数据的众数:

(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

2、8年级一班46个同学中,13岁的.有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少?

四、课堂小结

方差公式:

给力提示:方差越小说明这组数据越 。波动性越 。

每课一首诗:求方差,有公式;先平均,再求差;

求平方,再平均;所得数,是方差。

五、课堂检测:

1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

六、课后作业:必做题:教材141页 练习1、2 选做题:练习册对应部分习题

七、学习小札记:

写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

    想了解更多实数教案的资讯,请访问:实数教案
精选阅读

本文来源:http://www.y953.com/y/16196.html

  • w
    鲁迅雪教案(经典5篇)

    发布时间:2025-02-14

    《雪》是鲁迅散文诗集《野草》中最为明朗的5篇。它景物清新,格调明丽,在两幅不同情调的雪景图的渲染中蕴含着对独立与张扬个性精神的赞颂。下面是小编收集整理的鲁迅《雪》优秀教学设计,以供大家参考借鉴。鲁迅雪教案 篇1一、教学目标1.积累课文生字词,了解鲁迅的生平和代表作2.品味两幅不同的雪...

  • w
    中班饮食安全教案(优选十二篇)

    发布时间:2025-03-18

    作为一位不辞辛劳的人民教师,常常需要准备教案,借助教案可以有效提升自己的教学能力。那么大家知道正规的教案是怎么写的吗?以下是小编为大家收集的饮食安全班会教案,欢迎大家借鉴与参考,希望对大家有所帮助。中班饮食安全教案 篇1随着人们对健康与安全意识的提高,幼儿园食品安全问题越来越备受关注。幼儿园...

  • w
    萝卜蹲教案(经典7篇)

    发布时间:2025-02-07

    作为一位杰出的教职工,时常会需要准备好教案,教案是教学活动的依据,有着重要的地位。如何把教案做到重点突出呢?以下是小编为大家整理的中班户外活动《萝卜蹲》教案范文,欢迎阅读与收藏。萝卜蹲教案 篇1一、点名时间:1、活动材料:手偶娃娃2、介绍目的:培养幼儿的语言表达能力和自信心,给孩子一...

  • w
    孔子游春的教案(实用十二篇)

    发布时间:2024-12-31

    在教学工作者开展教学活动前,时常会需要准备好教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案应该怎么写才好呢?以下是小编帮大家整理的《孔子游春》教案,欢迎大家借鉴与参考,希望对大家有所帮助。孔子游春的教案 篇1教学要求:1、正确、流利、有感情地朗读课文,背诵《孔子...

  • w
    有趣的图形小班教案(汇总十二篇)

    发布时间:2025-01-04

    作为一名无私奉献的老师,通常需要用到教案来辅助教学,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。教案要怎么写呢?以下是小编精心整理的幼儿园小班科学活动《有趣的图形》教案,希望对大家有所帮助。有趣的图形小班教案 篇1活动设计背景中班的幼儿已有了粗浅的几何概念,这一阶段的...

  • w
    家族榜样作文(经典十二篇)

    发布时间:2025-02-25

    什么是榜样?榜样是灯,照亮我前进的道路;榜样是风,吹动我前进的帆船;榜样是指南针,指引我前进的方向,接下来就由小编带来榜样作文800字(精选12篇),希望对你有所帮助!家族榜样作文 篇1古人曾经说过:世界上没有绝对完美的人。是的,世界上不存在完美的天使,一切要靠自己。但是我想告诉大家的是:我...

  • w
    户外游戏托班教案(分享十二篇)

    发布时间:2025-01-02

    作为一名优秀的教育工作者,往往需要进行教案编写工作,编写教案助于积累教学经验,不断提高教学质量。如何把教案做到重点突出呢?以下是小编收集整理的幼儿园托班体育活动教案,供大家参考借鉴,希望可以帮助到有需要的朋友。户外游戏托班教案 篇1活动目标:1、锻炼幼儿钻过70厘米高的障碍物,发展其钻的...

  • w
    帮助初中作文(经典十二篇)

    发布时间:2025-02-07

    在日复一日的学习、工作或生活中,大家都经常看到作文的身影吧,作文根据写作时限的不同可以分为限时作文和非限时作文。那么问题来了,到底应如何写12篇优秀的作文呢?下面是小编为大家整理的同学帮助我初中作文,仅供参考,大家一起来看看吧。帮助初中作文 篇1叮铃铃,下课了,同学们又围在一起讲自己过生日时...